

Mowito’s Navigation Stack documentation

Mowito’s Navigation Stack

	About Mowito Navigation Stack
	Overview

	Features of the Navigation Stack

	How to use Mowito Navigation Stack

	Installation Guide
	System Requirements

	Setting up Mowito Navigation Stack

	Step 1 : Choosing a Bot
	For Simulation

	For Real Robot testing

	Step 2 : Setup the Bot
	Setup for Simulation

	Step 3 : Generate a Map
	Mapping for Simulation Pursose

	Step 4 : Navigate the Chosen Bot
	Navigation for Simulation Purpose

	Route Based Navigation

	Step 5 : Configuring Bot Parameters

	Config : Controller - MaxL
	Overview

	Robot Parameter Description

	MaxL Controller Tuning Guide
	Steps to tuning the MaxL Controller

	Step 1 : Generating Motion Primitives for the Controller

	Step 2 : Configuring the MaxL parameters

	Config : Mission Executive

	Running the Actual ROSBot
	Connect To ROSBot

	Setup Mowito’s Stack On Robot

	Navigation - Without Map

	Navigation - With Map

	Configuring Navigation Stack

	Setting Up Rviz

	Interfaces
	ROS-Topics

	Service Calls

	Behavior Tree for the Mowito Stack
	Overview

	Behavior Tree Node Description

	Example Tree Structures

	Legend

 	
 Next topic: About Mowito Navigation Stack

 About Mowito Navigation Stack

About Mowito Navigation Stack

Overview

Mowito’s Navigation Platform, is a software with a module dedicated for each specific task of navigation, such as planning, controlling, recovering etc.

Each module can be configured, tested and even replaced by another custom module. All the platform needs are the details about the task or location of the goal, and then based on the sensor inputs, it will drive the robot to perform the given task or reach the goal.

The critical features of the platform are its flexibility and the fast obstacle avoidance.
Our controllers are optimized to detect the obstacles and correct the path at a high frequency, without waiting for the obstacle to clear the path.

You can see our controller in action on our website mowito.in

Features of the Navigation Stack

[image: features_mowito.jpg]

 	
 Previous topic: Mowito’s Navigation Stack documentation

 	
 Next topic: How to use Mowito Navigation Stack

 How to use Mowito Navigation Stack

How to use Mowito Navigation Stack

The following are the steps to be followed while using the Mowito Navigation stack.

[image: mowito_steps.png]

 	
 Previous topic: About Mowito Navigation Stack

 	
 Next topic: Installation Guide

 Installation Guide

Installation Guide

System Requirements

Hardware Requirements

Processor :

Intel core i5 or higher (minimum 4 cores)

ARM v7/v8 (minimum 4 cores)

Memory :

Minimum : 4GB RAM

Recommended : 8GB RAM

Network :

WiFi 2.4/5 GHz

Sensors(Only when running on Bot Hardware) :

	2D/3D LiDAR

	For SLAM and obstacle avoidance : 30m (wh) minimum range

	For Obstacle Avoidance : 10m (wh) minimum range

	Wheel encoder : 1000 pulse/rotation (minimum)

	IMU : MPU 9250, Xsense MTi-3 AHRS, Bosch BNO055

	GPS (When operating outdoors)

Software Requirements

Operating System

Ubuntu 18.04 or higher

Mandatory tools

Robot Operating System (ROS) Melodic of Noetic

Setting up Mowito Navigation Stack

User Registration

Register yourself on this website https://mowito.in/navigation_stack.html

We need your email to mail you the password, and to count how many people are using Mowito.

We won’t spam. :)

Installing the Mowito on Computer (amd64 or x86)

	Create a ROS workspace directory structure (would be useful in running simulation)

mkdir -p ~/mowito_ws/src/

	Clone the repo in the workspace you just created, using

cd ~mowito_ws/src/

for Ubuntu 18 - ROS Melodic

git clone -b melodic https://github.com/mowito/mowito_amd64.git

	Remove any previous installation of Mowito stack

cd mowito_amd64

for Ubuntu 18 - ROS Melodic

./remove_mowito.sh melodic

	Install the new Mowito stack

for Ubuntu 18 - ROS Melodic

./setup_mowito.sh melodic

Installing the Mowito on the Robot -ROSbot (arm64, armhf)

Checkout installation instructions for ROSbot. You can try out same steps on the turtlebot and other robots as well.

 	
 Previous topic: How to use Mowito Navigation Stack

 	
 Next topic: Step 1 : Choosing a Bot

 Step 1 : Choosing a Bot

Step 1 : Choosing a Bot

For Simulation

Mowito provide packages for the simulation of following robots:

	ROSbot (Melodic and Noetic)

	TurtleBot (Melodic)

	Husky (Melodic)

	Jackal (Melodic)

For Real Robot testing

Although Mowito’s navigaion stack can work on multiple kind of wheeled robots, we currently provide documentation for the following robots:

	ROSbot

You can adapt the steps and launch files for your own robot or contact Mowito (puru@mowito.in) to create custom launch files for your robot.

 	
 Previous topic: Installation Guide

 	
 Next topic: Step 2 : Setup the Bot

 Step 2 : Setup the Bot

Step 2 : Setup the Bot

This section shall provide the instructions to setup the stack on the chosen Bot.

Setup for Simulation

There are 3 steps to setup the chosen bot for simulation purposes

Step 1 : Cloning the chosen bot in the mowito_ws (the one you setup during installation)

For ROSBot, run the following command

cd ~/mowito_ws/src/ && git clone https://github.com/mowito/mowito_rosbot.git
cd ~/mowito_ws/src/ && git clone https://github.com/mowito/mw_mprims.git

For TurtleBot, run the following command

cd ~/mowito_ws/src/ && git clone https://github.com/mowito/mowito_turtlebot.git

For Husky, run the following command

cd ~/mowito_ws/src/ && git clone https://github.com/mowito/mowito_husky.git

Note

To use velodyne and slam toolbox [https://github.com/SteveMacenski/slam_toolbox] with husky, switch to the branch velodyne_with_husky

cd ~/mowito_ws/src/mowito_husky && git checkout velodyne_with_husky

For JackalBot, run the following command

cd ~/mowito_ws/src/ && git clone https://github.com/mowito/mowito_jackal.git

Step 2 : Install the dependencies

cd ~/mowito_ws/ && rosdep install --from-paths src --ignore-src -r -y

Step 3 : Build the workspace

catkin_make

Step 4 : FOR TURTLEBOT ONLY

Run the following commands

source <path_to_mowito_ws>/devel/setup.bash

export TURTLEBOT3_MODEL=waffle_pi

 	
 Previous topic: Step 1 : Choosing a Bot

 	
 Next topic: Step 3 : Generate a Map

 Step 3 : Generate a Map

Step 3 : Generate a Map

The Mowito Navigation Stack provides three methods to generate a map.

Mapping for Simulation Pursose

Method 1 : Manual Map generation via remote control robot exploration

Step 0 : Source the workspace

source <path_to_mowito_ws>/devel/setup.bash

Step 1 : Launch the sim_mw_mapping node

For ROSBot, run the following command

roslaunch mowito_rosbot sim_mw_mapping.launch

For TurtleBot, run the following commands

roslaunch turtlebot3_gazebo turtlebot3_world.launch

In another terminal, run the following commands:

export TURTLEBOT3_MODEL=waffle_pi

roslaunch mowito_turtlebot turtle_mowito_mapping.launch

For Husky, run the following command

roslaunch mowito_husky sim_mw_mapping.launch

For Jackal, run the following command

roslaunch mowito_jackal jackal_mw_mapping.launch

Step 2 : Launch the remote control for providing commands to the bot

in another terminal, run the following command :

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

Method 2 : Map generation by providing goal destination for navigating robot for exploration

Here, the robot will explore the map based on the goal destination provided by the user on RViz.

For ROSBot, run the following command

roslaunch mowito_rosbot sim_mw_navigation_with_no_map.launch

For TurtleBot, run the following command

roslaunch turtlebot3_gazebo turtlebot3_world.launch

In another terminal, run the following commands:

export TURTLEBOT3_MODEL=waffle_pi

roslaunch mowito_turtlebot turtle_mowito_nav_no_map.launch

For Husky, run the following command

roslaunch mowito_husky sim_mw_navigation_with_no_map.launch

For using cartographer for mapping/ SLAM instead of default mw_mapping, use the following commad:

roslaunch mowito_husky sim_mw_navigation_with_no_map.launch cartographer:=true

For using slam toolbox for mapping/ SLAM with velodyne, use the following commad:

roslaunch mowito_husky sim_mw_navigation_with_no_map_slam_toolbox.launch

For Jackal, run the following command

roslaunch mowito_jackal jackal_mw_nav_no_map.launch

The goal can be provided on RViz using the “2D Nav Goal” feature provided on RViz.

The icon is highlighted in red in the image below.

[image: 2D_nav_goal_icon.png.png]

Saving the Map

Once you are done creating the map on rviz, save the map on a new terminal exeute the following:

cd && rosrun map_server map_saver -f mymap

the map (pgm and yaml) is saved in the home directory with the name mymap.pgm and mymap.yaml

For Huskybot

	if you were using cartographer to build the map , run the following command

rosrun mowito_husky save_carto_map.sh map_name

the map (pbstream) is saved in the home directory with the name map_name.pbstream. If no map_name is given then it would save as map.pbstream

	if you were using slam toolbox to build the map, open the slam toolbox plugin in Rviz by clicking the panels and give a name for the map and store it using serialize map option.

[image: panels.png]
[image: toolbox.png]
the map is saved in the .ros folder in the home directory with the name husky_map.posegraph and husky_map.data.

Alternatively, in order to save the map, on a new terminal execute the following:

rosservice call /slam_toolbox/serialize_map "husky_serialize"

 	
 Previous topic: Step 2 : Setup the Bot

 	
 Next topic: Step 4 : Navigate the Chosen Bot

 Step 4 : Navigate the Chosen Bot

Step 4 : Navigate the Chosen Bot

This section shall provide instructions on how to navigate the chosen Bot.

Navigation for Simulation Purpose

Step 0 : Source the workspace

source <path_to_mowito_ws>/devel/setup.bash

Step 1 : Place the robot at the origin of map (the place where you started mapping)

Step 2 : For running the entire system with mowito’s controller, run the following command

For ROSBot, run the following command

roslaunch mowito_rosbot sim_mw_navigation.launch

If you want to use the map created in the previous section use the following command

roslaunch mowito_rosbot sim_mw_navigation.launch map_name:=mymap

For TurtleBot, run the following command

roslaunch turtlebot3_gazebo turtlebot3_world.launch

In another terminal, run the following commands:

export TURTLEBOT3_MODEL=waffle_pi

roslaunch mowito_turtlebot turtle_mowito_nav_map.launch

If you want to use the map created in the previous section use the following command

roslaunch mowito_turtlebot turtle_mowito_nav_map.launch map_name:=mymap

For HuskyBot, run the following command

roslaunch mowito_husky sim_mw_navigation.launch

If you want to use the map created in the previous section use the following command

roslaunch mowito_husky sim_mw_navigation.launch map_name:=mymap

For using cartographer for mapping/ SLAM instead of default mw_mapping, use the following command:

roslaunch mowito_husky sim_mw_navigation.launch cartographer:=true

For using slam toolbox for mapping/ SLAM with velodyne, use the following commands:

	move the map data to .ros folder in your system by running the following two commands:

cd <path_to_mowito_ws>/src/mowito_husky/husky/mowito_husky/maps/

cp husky_serialize.data husky_serialize.posegraph ~/.ros/

	set the name of the map file and map start pose [x,y,theta] in mowito_ws/src/mowito_husky/husky/mowito_husky/config/slam_toolbox_config/slam_toolbox_localization.yaml:

map_file_name: husky_serialize

map_start_pose: [0.0, 0.0, 0.0]

	run slam toolbox for mapping/ SLAM with velodyne:

roslaunch mowito_husky sim_mw_navigation_slam_toolbox.launch

For Jackal, run the following command

roslaunch mowito_jackal jackal_mw_nav.launch

Here, “mymap” is the map that was generated in the earlier step (Step 3 : Generate the map)

Step 3 : in the rviz, click on the second top panel, click on the nav goal option, and click on the displayed map to give goal to the robot

Step 4 : look at the output on the rviz, the path planned and the motion of the robot

Route Based Navigation

Overview

	In addition to the waypoint navigation feature in simulation, one can also simulate the robot by giving route points via route.yaml (type) file.

	This feature provides user the ability to give pre-planned goals.

	There are two ways for using this feature. We will be using the example of husky robot simulation to explain this:

Note

While using this feature, it is highly recommended that one uses the genroute planner for optimal results.

There are two ways to go about using Routes, based on when the user wants to change the planner types.

A. Selecting the type of (Global) Planner before launching the stack

	Open the mission_executive_params.yaml file located inside the mowito_husky/husky/mowito_husky/config/mission_executive_config folder of the mowito_husky package.

	Change the planner tag to genroute.

	Now, lets run navigation with map:

For ROSBot run the following command

roslaunch mowito_rosbot sim_mw_navigation.launch

For TurtleBot run the following commands

roslaunch turtlebot3_gazebo turtlebot3_world.launch

In another terminal, run the following commands:

export TURTLEBOT3_MODEL=waffle_pi

roslaunch mowito_turtlebot turtle_mowito_nav_map.launch

For Husky run the following command

roslaunch mowito_husky sim_mw_navigation.launch

For Jackal run the following command

roslaunch mowito_jackal jackal_mw_nav.launch

	In a new terminal, run the set_route_client node with the appropriate file path to the route.yaml (type) file. Sample route files are available in the samples folder of the mowito_husky package:

rosrun executive set_route_client path/to/route/file

B. Changing the (Global) Planner during the run (after launching the stack)

	Lets run navigation with map:

For ROSBot run the following command

roslaunch mowito_rosbot sim_mw_navigation.launch

For TurtleBot run the following command

roslaunch turtlebot3_gazebo turtlebot3_world.launch

In another terminal, run the following commands:

export TURTLEBOT3_MODEL=waffle_pi

roslaunch mowito_turtlebot turtle_mowito_nav_map.launch

For Husky run the following command

roslaunch mowito_husky sim_mw_navigation.launch

For Jackal run the following command

roslaunch mowito_jackal jackal_mw_nav.launch

	Use the change_planner and change_controller services to change the planner and controller respectively. For this, in a new terminal, execute:

rosservice call /mission_executive/change_planner genroute

	Now, in a new terminal, run the set_route_client node with the appropriate file path to the route.yaml (type) file. Sample route files are available in the samples folder of the mowito_husky package:

rosrun executive set_route_client path/to/route/file

[image: set_route.png]
Example: rosbot following a given route

 	
 Previous topic: Step 3 : Generate a Map

 	
 Next topic: Step 5 : Configuring Bot Parameters

 Step 5 : Configuring Bot Parameters

Step 5 : Configuring Bot Parameters

One of the good things about Mowito’s Navigation stack is that you can easily configure it for different situations. You can find the configuration files in the config folder of the mowito packages for the respective robots:

	ROSbot - mowito_ws/src/mowito_rosbot/config

	Turtlebot - mowito_ws/src/mowito_turtlebot/mowito_turtlebot/config

	Husky - mowito_ws/src/husky/mowito_husky/config

	Jackal - mwowito_ws/src/mowito_jackal/mowito_jackal/config

The following pages will get into more details about different config files, and how can they be used for your purpose.

We will be focussing on configuring:

	Controller - :ref: MaxL Controller<maxl_planner>

	Mission Executive

	Costmap

 	
 Previous topic: Step 4 : Navigate the Chosen Bot

 	
 Next topic: Config : Controller - MaxL

 Config : Controller - MaxL

Config : Controller - MaxL

Overview

MaxL Planner is a package that is used to drive the robot. It issues the linear and angular velocity commands that are needed to reach the goal.

Robot Parameter Description

1. Robot Configuration Parameters

	Parameter

	Units

	Description

	use_laser

	true/false

	If true, the robot uses the rpLidar Sensor otherwise uses velodyn Sensor for planning

	pathFolder

	File path

	The relative path to the path folder

	pathFile

	String

	The name of the path

	autonomyMode

	true/false

	If true, calculates the relative goal for the robot to follow

2. Linear speed and acceleration

	Parameter

	Units

	Description

	maxSpeed

	S.I (m/s)

	Maximum possible linear velocity

	maxAccel

	S.I (m/s^2)

	Maximum possible linear acceleration

3. Turning Parameters

	Parameter

	Units

	Description

	yaw_gain

	(Numeric) eg.2.5

	Yaw gain used when robot is in motion

	stop_yaw_gain

	(Numeric) eg. 0.6

	Yaw gain used when robot is stopped/almost stopped

	max_yaw_rate

	S.I (rad/s)

	Maximum angular velocity for the robot

4. Inflation

	Parameter

	Units

	Description

	x_inflate

	S.I (m)

	Obstacle Inflation in the x direction

	y_inflate

	S.I (m)

	Obstacle Inflation in the y direction

5. Frame Names

	Parameter

	Units

	Description

	map_frame

	String

	Name of the map frame

	robot_frame

	String

	Name of the robot base frame

	velodyne_frame

	String

	Name of the velodyn Sensor frame

	laser_frame

	String

	Name of the rpLidar Sensor frame

6. Topic Names

	Parameter

	Units

	Description

	odomTopic

	String

	The topic name which publishes the odometry

	velodyneTopic

	String

	The topic name which publishes the velodyn sensor data

	scanTopic

	String

	The topic name which publishes the rpLidar sensor data

7. Robot Footprint

	Parameter

	Units

	Description

	vehicleLength

	S.I (m)

	Length of the vehicle

	vehicleWidth

	S.I (m)

	Width of the vehicle

8. Obstacle Ranges

	Parameter

	Units

	Description

	obstacle_horizon

	S.I (m)

	Parameter used for cropping the pointcloud

	min_path_range

	S.I (m)

	Minimum path range for finding the path

	initial_path_scale

	(Numeric) eg. 1.0

	Initial path scale value. Path Scales scale the paths and distances.
Low pathScale means path elongation and vice-versa.

	min_path_scale

	(Numeric) eg. 0.75

	Minimum path scale value. For particular local goal, pathScale starts
with initial value, finds a path, then value of path scale is decreased
to find a longer solution path, till it hits the minPathScale.

	path_scale_step

	(Numeric) eg. 0.25

	Path Scale step value

9. Pure Pursuit Parameters

	Parameter

	Units

	Description

	min_lookahead

	S.I (m)

	The minimum lookahead on the global path for the robot

	max_lookahead

	S.I (m)

	The minimum lookahead on the global path for the robot

	closest_point_index_search

	(Numeric) eg. 10

	Search for closest point index within this range of previous closest point

	min_radius

	S.I (m)

	Minimum radius the robot can take from current to goal pose

	max_radius

	S.I (m)

	Maximum radius the robot can take from current to goal pose

	max_omega_radius

	S.I (m)

	Radius set when condition for straight line is satisfied

	max_y_deviation

	S.I (m)

	Maximum deviation in the lateral direction

	lookahead_point_distance

	S.I (m)

	Used to find the point in the global path to follow

	lookahead_factor_val

	(Numeric) eg. 0.088

	Controls the senstivity of movement of lookahead goal. Lower the value
lower the change in the postion of lookahead goal.

	lookahead_jump_threshold

	S.I (m)

	If the change in the position of lookahead goal is greater than this
value, it would be considered a jump (oscillation)

10. MaxL Miscellaneous Parameters

	Parameter

	Units

	Description

	direction_threshold

	(degrees) eg. 120

	The fan size (in degrees) on either side of robot wrt relative goal

	high_accuracy_multiplier

	(Numeric) eg. 0.4

	High accuracy multiplier for reaching the goal (0,1]

	vis_pointcloud

	true/false

	Parameter to enable visualisation of detailed data (pointcloud data)

	use_odom_velocity

	true/false

	Parameter to take velocity from odom messages

	reverse_enabled

	true/false

	Parameter to enable reverse motion for the robot

	truncated_fan_angle

	(degrees) eg. 10

	The fan size (in degrees) on either side of robot wrt relative goal when
there is no obstacle detected by the robot

11. Parameters for Oscillation Detection by Path Index

	Parameter

	Units

	Description

	pi_osc_senstivity

	(Numeric) eg. 5

	Controls the senstivity of jump detection. If this value is high, even small changes
in the value of selected path index are considered an oscillation and vice-versa

	pi_osc_threshold

	(Numeric) eg. 10

	Everytime an oscillation is detected, a count is increased. If this count goes
above this threshold, oscillations are considered true and not just an error in
detection

	osc_det_by_score_path

	true/false

	Flag to switch on/off the critic/method of oscillation detectino by path index. If
false, the above mentioned params would be rendered ineffective.

12. Parameters for Oscillation Detection by Angular Velocity

	Parameter

	Units

	Description

	av_osc_sample_window

	S.I (s)

	Time period/window over which frequency of oscillation is calculated

	av_osc_freq_threshold

	(Numeric) eg. 3.5

	If the frequency of change in angular velocity direction per av_osc_sample_window
is more than this value, it is considered an oscillation

	osc_det_by_ang_vel

	true/false

	A flag which gives user the choice to use this method of oscillation detection. If
false, oscillation detection by this method will stop

13. Scoring Parameters

	Parameter

	Units

	Description

	scoring_algo_index

	(Numeric) eg. 1

	This parameter decides which scoring algorithm will be used to score paths.
Currently, we have 4 different scoring algoritms to chose from

	scoring_algo_four_senstivity_factor

	(Numeric) eg. 0

	This parameter is used only by scoring algo number four. It controls the amount of
time for which oscillation mitiagtion will last. The larger the value, the longer
the oscillation mitigation will work to remove oscillation

	in_place_rotation_penalty

	(Numeric) eg. 0.05

	Higher value penalises in place rotation more

	goal_direction_preference

	(Numeric) eg. 0.2

	Higher value means controller prefers paths oriented towards the goal

 	
 Previous topic: Step 5 : Configuring Bot Parameters

 	
 Next topic: MaxL Controller Tuning Guide

 MaxL Controller Tuning Guide

MaxL Controller Tuning Guide

This is a guide that will describe the steps to tune the MaxL controller for any deployment of the Mowito Navigation Stack. This guide shall provide all the parameters that are required to be tuned, their significance and description of what the parameters mean.

This guide is typically meant for the end users who will be using the Mowito Navigation stack and have deployed the navigation stack on their respective hardware. This guide will only address the controller and obstacle avoidance functionality of the Mowito Navigation Stack.

Steps to tuning the MaxL Controller

The MaxL controller is a proprietary state of the art control and obstacle avoidance system that has the ability to process information and control the robot and avoid obstacles with a refresh rate as high as 50 Hz. In order to use the MaxL controller provided in the Mowito Navigation Stack, the controller is required to be tuned.

The following flow chart shall highlight the steps to follow for tuning the MaxL controller.

[image: _images/stages.png]
The process of tuning the controller involves two major steps :

Step 1 : Generating Motion Primitives for the Controller

The Motion Primitives are a set of precomputed paths that the robot can take while the robot is in motion. Whenever an obstacle confronts the robot, some of the precomputed paths are blocked and the controller chooses a path from the set of paths that are not blocked.

While tuning the controller generation of these precomputed paths is a mandatory first step. To generate the motion primitives, the following information is required :

	Robot Length

	Robot Width

The motion primitives would be generated using a tool provided by Mowito.

Here are the steps to generate the motion primitives:

Accessing the motion primitives generator web tool

The motion primitives are generated using a web tool developed by Mowito. So inoder to generate the motion primitives, the user must access the web tool.

Here is the link to the web tool [http://ec2-15-207-68-243.ap-south-1.compute.amazonaws.com/]

Upon accessing the web tool, the user will land onto the following page :

[image: _images/mprim_generator.png]

Setting the motion primitive parameters to generate the motion primitives

Inorder to generate the motion primitives, certain parameters are required to be set. The parameters that are required to be set by the user are :

	Path Distance or simply Distance

	Search Radius

The aforementioned parameters are the ONLY TWO PARAMETERS that the USER MUST SET.
Tampering any other parameter shall generate wrong motion primitives.

The details of the two parameters are as follows :

1. Path Distance

The distance basically indicates the length of the motion primitives from the center of the robot. The following diagram gives an illustration of the path distance.

[image: _images/robot_mprim.png]
The path distance value shall remain within the following bounds :
Minimum path distance : (Robot Length)/2
Maximum path distance : obstacle horizon distance (shall be explained in section 4)

2. Search radius

The search radius for the motion primitives shall be set a value equal to the radius of the circle that encircles the robot. The search radius parameter is illustrated in the following diagram.

[image: _images/search_radius.png]
Basically a higher search radius will provide a greater safety shield around the robot while the algorithm selects a path. However, a higher search radius will also lead to lesser free paths being available when the robot is confronted by an obstacle.

Thus it would be wise and apt to set the search radius to a value = radius of the circle encircling the robot.

Hit the Submit button

[image: _images/submit_button.png]

The motion primitives will begin generation and a progress bar is displayed to track it

[image: _images/progress.png]

After completion

the web tool will display the motion primitives and will display the paths generated. Further the tool will prompt the user to enter the name for the paths that are generated

[image: _images/filename.png]
A general convention to name the motion primitive file is given below

mw_mprim_dxdd_rxrr

d = path distance
r = search radius

For example, the naming of the path file for motion primitives with path distance = 1.2 m and search radius = 0.55 m would be as follows :

mw_mprim_1x20_0x55

Another example, the naming of the path file for motion primitives with path distance = 0.75 m and search radius = 0.65 m would be as follows :

mw_mprim_0x75_0x65

Hit the download button

Uncompress the downloaded folder and place it in the active working directory in your robot workspace.

Step 2 : Configuring the MaxL parameters

The MaxL parameters are the parameters that help the algorithm decide what path to select during the robot motion when confronted by an obstacle and otherwise. There are four categories of MaxL parameters that the users can configure based on various condition.

The parameters can be editted using the mw_maxl_planner.yml file which is located in the controller_config folder.

Parameters influneced by Bot architecture:

	vehicleLength : Specifies the robot length. Unit : m

	vehicleWidth : Specifies the robot width. Unit : m

	maxSpeed : Specifies the maximum speed the robot can operate at. Unit : m/s

	maxAccel : Specifies the maximum acceleration the robot can operate at. Unit : m/s2

	min_lookahead : Specifies the minimum lookahead point the robot must reach on the global path when the robot is in motion. Unit : m. Nominal value : (Robot length / 2) * 1.1

	in_place_rotation_penalty : This parameter specifies the weight factor to be used while scoring the different free paths available when the robot is confronted by an obstacle. The following plot shows yaw angle Vs time, of a ROSbot when executing a 3600 U-turn with various values of in_place_rotation_penalty

[image: _images/in_place_rotation_penalty_plot.png]

Parameters influneced by environment and trajectories:

	pathFolder : Specifies the path for the motion primitives folder where path files are located.

	max_lookahead : specifies the maximum lookahead point the robot must reach on the global path when the robot is in motion . Unit : m

	max_yaw_rate : Specifies speed at which the robot performs on spot turn. Unit : rad/s

	yaw_gain : Related to rotation of robot while in motion. Following plot shows performance of a ROSbot (time took to complete) on a given trajectory with different turn radii.

[image: _images/yaw_gain.png]

	goal_direction_preference : Weight factor to be used while scoring the different free paths available when the robot is confronted by an obstacle. In cluttered environment it is recommended to have lower values. Nominal value : 0.8

	obstacle_horizon : specifies the distance to which the robot must look inorder to detect an obstacle. Units : m Nominal value : 1.5 m. There is a constraint on this parameter as follows.It should be greater than path distance of the motion primitives.

Users should only change the above mentioned parameters and should not change any other parameter values in the mw_maxl_planner.yml file

 	
 Previous topic: Config : Controller - MaxL

 	
 Next topic: Config : Mission Executive

 Config : Mission Executive

Config : Mission Executive

Below is a brief of the parameters in the Mission Executive Config file.

	Parameter

	Description

	map_frame

	This parameter stores the map/global frame id.

	robot_frame

	This parameter stores the robot frame id.

	loop_frequency

	The frequency at which the mission_executive node runs.

	max_time_lag

	Maximum time in which the feedback should be recieved by the controller action server
during the controlling state.

	decay

	The factor by which the velocity of the robot is decreased if the feedback lag from the
controller action server passes the set threshhold (max_time_lag).

	planner

	The planner name. User can chose between NavfnPlanner and genroute.

	controller

	The controller name. User can chose between mw_maxl_planner,
trajectory_planner (open source local planner).

	plan_topic

	The topic name at which the path consisting of waypoints is published.

	cmd_vel_topic

	The topic name at which the command velocity of the robot is published.

	route_topic

	The topic name at which the route markers for visualizing the route in
Rviz are published.

	goal_queue_topic

	The topic name at which the goal queue markers for vizualizing the goals
in Rviz are published.

	tf_timeout

	The time threshold in which the current robot pose should be updated.

	max_retries

	The maximum amount of times the controller is allowed to reset before
aborting the mission.

	min_distance_tolerance

	If the robot traverses a distance lesser than the this tolerance for a
time greater than the recovery_timeouts, recovery will be triggered.
The greater the value the more sensitive the robot is to triggering recovery.

	min_angular_tolerance

	If the robot traverses an angular distance lesser than the this tolerance
for a time greater than the recovery_timeouts, recovery will be triggered.
The greater the value the more sensitive the robot is to triggering recovery.

	controller_reset_timeout

	The time threshold after which the controller is reset.

	recovery_timeouts i.e. recoveries

	The timeouts for differnt types of recoveries are set in this field. The
increasing order of timeouts decides the order in which recoveries will be executed.
Recovery with the least timeout will be executed first and so on.

	goal_queue_mode

	If true, the executive will add new goals to a queue and pursue them
on a one-by-one basis. If false, the new goals will replace the old goal
and only the latest goal will be pursued.

 	
 Previous topic: MaxL Controller Tuning Guide

 	
 Next topic: Running the Actual ROSBot

 Running the Actual ROSBot

Running the Actual ROSBot

If have you a Husarion ROSbot you can try out Mowito’s Navigation stack directly on it.

Connect To ROSBot

1. Get the ROSbot connected to a wifi

1.1. Connect a screen and keyboard with ROSBot, and then connect the ROSbot to the wifi.

1.2. Get the Laptop (ground station) on the same network as the ROSbot. This laptop will be used give goals to the ROSbot and visualize the path, sensore input and other info from the ROSbot

2. Get the IP address of the RObot

2.1. Open the terminal

	2.2. execute the followin command

	hostname -I
The output is the IP address of the ROSbot, note it down.

3. SSH into the ROSbot

	3.1. Open the terminal on your laptop and execute the following

	ssh husarion@<ip address of the ROSbot>

	3.2. If you avahi daemon running on the robot then you can instead try

	ssh husarion@husarion.localwhere husarion is the user name and hostname of the ROSbot respectively.

4. Export ROS_IP on ROSBot

	4.1. SSH into the ROSbot and execute the following :

	export ROS_IP=<ip address of the ROSbot>

	4.2. If you have avahi daemon running then you can instead try:

	export ROS_IP=husarion.local

where husarion is the hostanme of your ROSbot

You have to execute the above commands every time you ssh into ROSbot to run Mowito’s navigation stack.

5. Setup the Laptop (ground station)

	5.1. Export ROS_IP

	Get the IP address of the laptop, by executing the following on the laptop’s terminal
hostname -I

then on the same terminal
export ROS_IP=<ip address of the laptop>

	5.2. Export ROS_MASTER_URI

	One same terminal execute the following:
export ROS_MASTER_URI=http://<ip address of the ROSbot>:11311

You have execute above two commans on each terminal of Laptop (Ground station) which you want to use for communicating to the ROSbot.

Setup Mowito’s Stack On Robot

User Registration

If you have already done, you can skip this step.

Register yourself on this website https://mowito.in/navigation_stack.html

We need your email to mail you the password, and to count how many people are using Mowito.

We won’t spam. :)

Installation Mowito Navigation Stack

	SSH into the ROSBot

	
	Create mowito directory

	mkdir -p ~/mowito_ws/src/

	
	Clone the repo containing the debians:

	cd ~/mowito_ws/src

for ROS melodic on arm 64
git clone https://github.com/mowito/mowito_arm64.git --branch melodic

for ROS kinetic on armV7 (armhf) git clone https://github.com/mowito/mowito_armv7.git --branch kinetic

	
	Remove any previous installation of Mowito stack

	cd mowito_arm64 or cd mowito_armv7 based on arm 64 or armV7 respcectively.

for ROS melodic
./remove_mowito.sh melodic

for ROS kinetic
./remove_mowito.sh kinetic

	
	Install the new Mowito stack

	For ROS melodic
./setup_mowito.sh melodic

For ROS kinetic
./setup_mowito.sh kinetic

	
	In the end, the setup will ask for the uesr registeration.

	Use the user name you used on the registration website and password that was mailed to you. You can use any name as robot name.

Installation of Mowito Rosbot Package

Mowito Rosbot package simply contains the necessary launch files and config files, which Mowito team create for easy deployment on ROSbot.

	SSH into the ROSBot

	clone the Mowito ROSbot package into the mowito_ws

cd ~/mowito_ws/src && git clone https://github.com/mowito/mowito_rosbot.git

	Build the Mowito ROSbot package.

cd ~/mowito_ws && catkin_make

of if you use catkin build tools

cd ~/mowito_ws && catkin build

	source the mowito_ws whenever you need to run mowito_rosbot

source ~/mowito_ws/devel/setup.bash

TIP:: you can add the above command in you ~/.bashrc so that its atuomatically executed everytime you open the terminal.

Navigation - Without Map

During this phase, for navigation the robot, you can use two methods

	Manual Navigation - Using Tele-Operation

	Autonomou Navigation - By giving goals through Rviz

Method 1 : Manual Navigation

Step 0 : SSH into the rosbot and on it source the workspace

ssh husarion@husarion.local

source ~/mowito_ws/devel/setup.bash

Step 1 : Launch the mw_mapping node

	With Mowito Mapping (default)

roslaunch mowito_rosbot run_mw_mapping.launch

	With cartographer

roslaunch mowito_rosbot run_mw_mapping.launch cartographer:=true

Step 2 : Launch the remote control for providing commands to the bot

in another terminal, SSH in into rosbot and run the following command :

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

Method 2 : Autonomous Navigation

Here, the robot will explore the map based on the goal destination provided by the user on RViz.

Step 0 : SSH into the rosbot and on it source the workspace

ssh husarion@husarion.local

source ~/mowito_ws/devel/setup.bash

Step 1 : Launch the Mowito Navigation without Map

	With Mowito mapping.

roslaunch mowito_rosbot run_mw_navigation_with_no_map.launch

	With Cartographer

roslaunch mowito_rosbot run_mw_navigation_with_no_map.launch cartographer:=true

Step 2: Provide Goal

Open another terminal, export ROS_MASTER_URI and ROS_IP and then source ROS and start rviz:

rviz

The goal can be provided on RViz using the “2D Nav Goal” feature provided on RViz.

The icon is highlighted in red in the image below.

[image: 2D_nav_goal_icon.png.png]

Saving the Map

Once you are done creating the map on rviz, for saving the map on a new terminal, ssh into rosbot and based on the mapping tool you were using execute the following command:

1) Mowito Mapping (defautl)

cd && rosrun map_server map_saver -f mymap

the map (pgm and yaml) is saved in the home directory with the name mymap.pgm and mymap.yaml

2) Cartographer , run the following command

rosrun mowito_rosbot save_carto_map.sh map_name

the map (pbstream) is saved in the home directory with the name map_name.pbstream. If no map_name is given then it would save as map.pbstream

Navigation - With Map

Step 0 : SSH into ROSBot and Source the workspace

source <path_to_mowito_ws>/devel/setup.bash

Step 1 : Place the robot

Preferable place the robot at the origin of map (the place where you started mapping)

Step 2 : Run the Mowito’s Navigation Stack

Open a terminal and SSH into the ROSBOT

1. Using map made from Mowito Mapping (in previous step)

roslaunch mowito_rosbot run_mw_navigation.launch

If you want to use the map created in the previous section use the following command

roslaunch mowito_rosbot run_mw_navigation.launch map_path:=/home/husarion/mymap.yaml

2. Cartographer based Localization

Use this if you created the map from cartographer in the previous step

roslaunch mowito_rosbot run_mw_navigation.launch cartographer:=true

Step 3 : Give the goals

In another terminal, export the ROS_MASTER_URI and ROS_IP, source ros and start rviz:

rviz

In the rviz, click on the second top panel, click on the nav goal option, and click on the displayed map to give goal to the robot.

Configuring Navigation Stack

Check out our documentation on configuring Mowito Navigation Stack on a robot.

Setting Up Rviz

Rviz is a tool for visualizing what the robot is seeing. Further, it could also provide GUI for the user to interact with the robot. Rviz can be opened in the computer (with screen) - most probably not the ROSbot, using the command rviz (after sourcing ROS).

In order to visualize all the interesting information on Rviz you have to add the topics on which they are getting published. You can find more information on this http://wiki.ros.org/rviz/UserGuide

To add a topic of visualisation:

	On the left “Display” pane, click on “add”

	Click on “by topic”

	select the topic name

	click on “ok”

now you one-by-one you have to add the following topics:
scan /map /plan /costmap/local_costmap/footprint /free_paths /local_path

for visualizing the axis of the robot and other frames:

	On the left “Display” pane, click on “add”

	Click on “by display type”

	select “axes”

	click on “ok”

Once you are satisfied with the configuration, click on File > save config, so that you don’t have to configure Rviz everytime you open it.

 	
 Previous topic: Config : Mission Executive

 	
 Next topic: Interfaces

 Interfaces

Interfaces

ROS-Topics

Below is the list of ROStopics in the Mowito Navigation Stack. In order to check the data from any of the topics below, on terminal
1. source ROS source /opt/ros/<your ros version>/setup.bash
2. rostopic echo <ros topic address>

	Topic name

	address

	description

	Command Velocity Publisher

	/cmd_vel

	it contains the linear and angular velocity which the robot should follow.

	Plan Publisher

	/plan

	it contains the global path/plan which the robot will follow

	Goal Queue Publisher

	/goal_queue

	Publishes all the goals in the queue

	Odometry

	/odom

	Contains the odometry of the robot. It is used as input by the Navigation Stack

	Mission Executive Status Publisher

	/mission_status

	Contains the navigation status of the robot.

Service Calls

In order to make a service call, on terminal (after sourcing ROS) do rosservice call <address of the service> <tab><tab> . Tab-tab to autocomplete the data structure, which user can modify. Service calls are best done programmatically, rather than through terminal. Here is a list of the service calls in the navigation stack.

	Service Name

	Address

	Description

	Set Plan

	/mission_executive/set_plan

	It lets the user to set a custom plan for the mission.
In other words, this service is used to when custom global planner is used
to plan the path, and pass it to the navigation stack for the robot to follow it.
one example of program using this service is rosrun mission_executive set_plan_client

	Set Route

	/mission_executive/set_route

	It lets the user to set multiple waypoints programatically. One example of a
program using this service is set_route_client (checkout Route based Navigation in Step 4).

	Route Status

	/mission_executive/get_route_status

	returns the status of current route the robot is executing

	Change Planner

	/mission_executive/change_planner

	changes the path planner used by the robot dynamically (without terminating the stack).

	Change Controller

	/mission_executive/change_controller

	changes the controller used by the robot dynamically

	Abort Planner Goals

	/mission_executive/abort_controller_goals

	cancels all the controller goals

	Abort Mission

	/mission_executive/abort_mission

	cancels all the planner and controller goals thereby aborting the mission

	Abort Controller Goal

	/mission_executive/abort_controller_goals

	cancels all the controller goals.

	Trigger Recovery

	/mission_executive/trigger_recovery

	triggers the robot into recovery mode

	Set Manual Override

	/mission_executive/set_manual_overrride

	It lets the user take over the executive giving user complete control over the movement the
robot. In Manual mode, the executive will not publish command velocities. The executive will
also not accept any goals, routes or plans until this service is called again and manual_mode
is set to false

	Change primitives

	/mw_maxl_planner/change_mprims

	It allows you to change motion primitives at runtime.For service call mention path to motion
primitive’s Files you would like to change to as argument as an argument to service

 	
 Previous topic: Running the Actual ROSBot

 	
 Next topic: Behavior Tree for the Mowito Stack

 Behavior Tree for the Mowito Stack

Behavior Tree for the Mowito Stack

Overview

	The behavior tree package provides:

	
	The ability to use mowito’s features in a modular fashion.

	The ability to change the tree nodes dynamically without re-compiling the whole stack.

	Easy-to-use XML templates over which the user can add their own features.

Behavior Tree Node Description

The behavior tree package for the Mowito Stack provides navigation-specific nodes which can be used directly in a Behavior Tree.

	BT Node

	Type

	Description

	folllow_path

	Action

	Invokes Mowito’s controller action server and makes the robot follow a given path. The node returns SUCCESS if the controller action server succeeds otherwise
returns RUNNING.

	generate_path

	Action

	Invokes Mowito’s planner action server and generates a path for a given goal. The node returns SUCCESS if the planner action server succeeds otherwise returns
RUNNING.

	backup

	Action

	Invokes Mowito’s recovery action server to make the robot move back to a specific pose. The node returns SUCCESS if the recovery action was successful
otherwise returns RUNNING.

	clear_costmap

	Action

	Invokes Mowito’s recovery action server to delete the current global-costmap. The node returns SUCCESS if the recovery action was successful otherwise
returns RUNNING.

	isStuck

	Condition

	Determines whether the robot is stuck or not using the robot’s odometry. If the robot is not progressing, the condition will return SUCCESS,
otherwise it will return FAILURE

	set_waypoint

	Condition

	This condition takes in the Rviz goals given by the user and checks if all the goals have been pursued. If the goals given by the user
are being pursued, the condition returns SUCCESS, otherwise it will return FAILURE.

	set_route

	Condition

	This condition takes in the goals given by the user via a route.yaml (type) file and checks if all the goals have been pursued.
If all the goals given by the user are being pursued, the condition returns SUCCESS, otherwise it will return FAILURE.

	set_plan

	Condition

	This condition takes in a plan given by the user via a plan.txt (type) file and checks if the given plan has been pursued. If the plan given by the user
is being pursued, the condition returns SUCCESS, otherwise it will return FAILURE

	Recovery

	Control

	This control node is designed for a acheiving a desired recovery behavior. Recovery is a control flow node with two children. It returns SUCCESS
if and only if the first child returns SUCCESS. The second child will be executed only if the first child returns FAILURE. If the second child SUCCEEDS,
then the first child will be executed again. The user can specify how many times the recovery actions should be taken before returning FAILURE

	Reactive

	Control

	This control node is especially designed for acheiving the desired wayoint behavior. Reactive is a control node with two children. It return RUNNING
if either of the child returns RUNNING or SUCCESS. If either of the child returns FAILURE, the node will return FAILURE.

Example Tree Structures

A. Navigate with waypoints and simple recovery actions

The following tree structure can be used for taking multiple goals from the user via the Rviz-Gui. This tree never returns that the action has finished successfully, but will return FAILURE after all the goals have been reached. However, until the system is shut down, the tree will continue to take new goals (if any) from the user and pursue them.

	To launch the behavior tree for naviagation with waypoints and simple recovery actions, execute:

roslaunch behavior_tree sim_bt_nav_waypoint_mode.launch

	This behavior tree is contained in the waypoint_navigation_tree.xml file inside the tree folder. The tree folder is alongside the CMakeLists.txt and package.xml files.

[image: tree_waypoint_mode.png]

B. Navigate with given route points and simple recovery actions

The following tree structure can be used for taking multiple goals from the user via a given route.yaml (type) file. This tree never returns that the action has finished successfully, but will return FAILURE after all the goals have been reached. However, until the system is shut down, the tree will continue to take new goals (if any) from the user and pursue them.

	To launch the behavior tree for navigation with route points and simple recovery actions, execute:

roslaunch behavior_tree sim_bt_nav_set_route_mode.launch

	This behavior tree is contained in the set_route_tree.xml file inside the tree folder. The tree folder is alongside the CMakeLists.txt and package.xml files.

[image: tree_set_route_mode.png]

C. Navigate with a given plan and simple recovery actions

The following tree structure can be used for taking multiple plans from the user via a plan.txt (type) file. This tree never returns that the action has finished successfully, but will return FAILURE after all the plans have been reached. However, until the system is shut down, the tree will continue to take new plans (if any) from the user and pursue them.

	To launch the behavior tree for navigation with a given plan and simple recovery actions, execute:

roslaunch behavior_tree sim_bt_nav_set_plan_mode.launch

	This behavior tree is contained in the set_plan_tree.xml file inside the tree folder. The tree folder is alongside the CMakeLists.txt and package.xml files.

[image: tree_set_plan_mode.png]

Legend

Legend for the behavior tree diagrams:

[image: legend.png]
For more information about the behavior tree nodes that are available in the default BehaviorTreeCPP library, see documentation here: https://www.behaviortree.dev/bt_basics/

 	
 Previous topic: Interfaces

 Index

Index

 Tips

Tips

If you have any problems with laser scan it probably means that you don’t have a dedicated graphic card (or lack appropriate drivers). If that’s the case then you’ll have to change couple of things in /rosbot_description/urdf/rosbot_gazebo file:

Find:

<!-- If you cant't use your GPU comment RpLidar using GPU and uncomment RpLidar using CPU gazebo plugin. -->

next coment RpLidar using GPU using <!– –> from <gazebo> to </gazebo> like below:

<!-- gazebo reference="rplidar">
<sensor type="gpu_ray" name="head_rplidar_sensor">
<pose>0 0 0 0 0 0</pose>
<visualize>false</visualize>
<update_rate>40</update_rate>
<ray>
 <scan>
 <horizontal>
 <samples>720</samples>
 <resolution>1</resolution>
 <min_angle>-3.14159265</min_angle>
 <max_angle>3.14159265</max_angle>
 </horizontal>
 </scan>
 <range>
 <min>0.2</min>
 <max>30.0</max>
 <resolution>0.01</resolution>
 </range>
 <noise>
 <type>gaussian</type>
 <mean>0.0</mean>
 <stddev>0.01</stddev>
 </noise>
</ray>
<plugin name="gazebo_ros_head_rplidar_controller" filename="libgazebo_ros_gpu_laser.so">
 <topicName>/rosbot/laser/scan</topicName>
 <frameName>rplidar</frameName>
</plugin>
</sensor>
</gazebo -->

Now uncomment RpLidar using CPU plugin removing <!– –>.

If you want to make your laser scan visible just change:

<visualize>false</visualize>

to:

<visualize>true</visualize>

in the same plug in.

 Config : Controller - Pure Pursuit

Config : Controller - Pure Pursuit

Description

Pure pursuit algorithm works by calculating the curvature that will move a vehicle from its current position to some goal position. The main part of the algorithm is to choose a goal position that is some distance ahead of the vehicle on the path. We can think of the vehicle as chasing a point on the path some distance ahead of it - it is pursuing that moving point. This look-ahead distance changes as we drive to reflect the twist of the path.

It is a proportional type controller and follows the global path more accurately. It is computationally fast and is well suited for situations when the robot has to follow a path exactly and doesn’t have to worry about obstacles.

Parameter Description

The performance of the pure pursuit controller is highly influenced by its parameters. The following parameters should be tuned for a customized behaviour.

	Parameter

	Units

	Description

	min_lookahead

	S.I

	minimum lookahead distance

	max_lookahead

	S.I

	maximum lookahead distance

	closest_point_index

	number

	search for closest point index within this range of previous closest point

	max_acceleration

	S.I

	maximum acceleration

	max_velocity

	S.I

	maximum velocity

	min_velocity

	S.I

	minimum velocity

	max_omega

	S.I

	maximum angular velocity

	max_radius

	S.I

	maximum radius the robot can take from current to goal pose

	min_radius

	S.I

	minimum radius the robot can take from current to goal pose

	max_omega_radius

	S.I

	radius set when condition for straight line is satisfied

	max_y_deviation

	S.I

	Maximum deviation in the lateral direction

	max_path_deviation

	S.I

	maximum path deviation between current and goal pose

	max_theta_deviation

	S.I

	maximum heading difference

	transform_tolerance

	S.I

	transform tolerance in seconds for pose in robot frame

Files to alter for Tuning

The following files need to be altered and saved for custom parameters to take effect.

1. turtle_mowito

	Pure Pursuit Controller

	mowito_ws/src/turtle_mowito/mowito_turtlebot/config/controller_config/pure_pursuit_controller.yaml

2. rosbot

	Pure Pursuit Controller

	mowito_ws/src/gazebo_sim/src/rosbot_description/config/controller/pure_pursuit_controller.yaml

Common Problems and Tuning

This section describes certain common problems and describes in more detail how changing parameters will affect the robot behaviour.

Tip

You can use rqt_reconfigure tool for configuring the parameters during the run time. To use it, use the following command on a new terminal :

rosrun rqt_reconfigure rqt_reconfigure

[image: PP_3.png]

Initial Check

	Make sure that the maximum acceleration is not set to zero.

	Make sure that the maximum y deviation is not set to zero.

	Make sure that the min and max radius are not equal (same for lookahead and velocities).

	Make sure that the minimum lookahead distance is in front of the robot. As the size of your robot increases the minimum lookahead distance should increase.

	Make sure that the path given to the robot does not have any obstacles in its way else the robot might get stuck.

A. Robot is not following the global path accurately when taking a hard turn

[image: PP_1.png]
Pure pursuit controller while taking a turn has to take a minimum radius value for the turn. This is what happens when the robot is asked to take a 90 degree turn. It takes a minimum radius value(here 0.2) to make that quadrant after which it slowly comes back to the global path. Instead, try to give the path to be followed by the robot to have some curvature as this will lead to a much smoother movement i.e follows the global path more accurately(using set_route) and also increase this radius for bigger robots. Example:

[image: PP_2.png]

B. The robot oscillates a lot while approaching a turn

Make sure that the lookahead goal is in front of the robot and not underneath it. Also, reduce the maximum angular velocity for a smoother motion.

C. The robot is unable/takes more time to follow its path after taking a turn

Increase the closest point search index to include more number of points to choose from and also check the minimum lookahead goal.

 Config : Controller - Trajectory Planner

Config : Controller - Trajectory Planner

Overview

Trajectory Planner is a package that is used to drive the robot. It issues the linear and angular velocity commands that are needed to reach the goal. Trajectory Planner in itself does not map a path to the goal; it focuses on following the global path to the goal efficiently.

For a more relatable example, think about how GPS apps map out a path to a destination from a start location, It is up to the driver of the vehicle to follow the path while avoiding other cars, obstacles, speeding up, stopping at traffic lights, etc. Trajectory planner is meant to replicate the ‘driver’ and choose the best course of action to follow the path to the destination.

Working and Description

Think about how a driver of a vehicle makes simple decisions while following the route given by a GPS app. The driver may choose to accelerate the vehicle or slow it down or turn the steering left or right to add curvature to the vehicle’s path. It is reasonable to say that the driver is subconsciously thinking about each combination of the accelerator pedal and the steering wheel and choosing the best of these combinations. Which combination is the best depends on answering questions such as:

	Does this combination allow me to reach the goal quickly?

	Am I running into obstacles if choose this combination?

	Will I stay on the course described by the GPS?

He or she evaluates each combination and chooses the optimal one. This process repeats until the driver reaches the goal.

Trajectory Planner tries to replicate this approach. It takes a set of linear velocities and angular velocities. It then checks the validity of each combination of the two velocities and discards it if invalid. For example, a combination can be invalid if it causes the robot to hit an obstacle.

If the combination is not invalid, a ‘score’ is assigned to it on the basis of several parameters. The scoring process is analogous to the driver of the vehicle choosing the best course of action in the scenario given before. The scoring parameters include, but are not limited to:

	Proximity to obstacles

	Proximity to the goal

	Proximity to the global path

	Speed

Tweaking these scoring parameters effectively allows for better navigation and is critical to the Trajectory Planner algorithm.

Robot Parameter Description

We previously saw that tuning the trajectory planner’s scoring parameters is important for properly following a path and avoiding obstacles. Before going into the scoring parameters, it is important to let Trajectory Planner know about your robot. Just like the driver knows about his or her vehicle, its acceleration potential, turning radius, braking distance, etc, Trajectory planner also needs to know this information about the robot.

1. Robot Configuration Parameters

	Parameter

	Units

	Description

	max_vel_x

	S.I

	Maximum possible Linear Velocity

	min_vel_x

	S.I

	Minimum possible Linear Velocity

	max_vel_theta

	S.I

	Maximum possible Angular Velocity

	min_vel_theta

	S.I

	Minimum possible Angular Velocity

	min_in_place_vel_theta

	S.I

	Minimum possible Angular Velocity when the robot is turning about its axis and not
in linear motion.

	acc_lim_x

	S.I

	Maximum possible Linear Acceleration

	acc_lim_y

	S.I

	Maximum possible Linear Acceleration along y axis (consider positive x-axis to be
forward for the robot. Usually this value is set to 0).

	acc_lim_theta

	S.I

	Maximum possible Angular Acceleration

2. Goal Tolerance Parameters

	Parameter

	Units

	Description

	xy_goal_tolerance

	S.I

	Maximum allowable deviation in robot position from the goal position.

	yaw_goal_tolerance

	S.I

	The goal also specifies the direction in which the robot faces at goal-position.
This parameter specifies the maximum allowable angular deviation in the robot
orientation from the goal orientation.

3. Differential-Drive Robot Configuration

	Parameter

	Values

	Description

	holonomic_robot

	true/false

	If robot uses differential drive or cannot move along y-axis, set this to false.
If robot can also move in y-direction without turning (eg mecanum wheels),
set this to true.

4. Forward Simulation Parameters

These parameters affect how linear velocity and angular velocity pairs, also called (v, w) pairs, are created or declared invalid.

	Parameter

	Units

	Description

	sim_time

	seconds

	A small simulation is run with the (v, w) pair. If the robot collides with an
obstacle for the given v and w, the pair is declared invalid. sim_time controls how
long this simulation runs for.

	vx_samples

	Number

	Number of samples to take for linear velocity

	vtheta_samples

	Number

	Number of samples to take for angular velocity

	sim_granularity

	Number

	Granularity defines the step size between points on a trajectory. Each point is
checked for collision, so lower granularity means testing more points and using more
computation resources.

	angular_sim_granularity

	Number

	Granularity for angles. Used for orientation instead of position.

	heading_lookahead

	Number

	Lookahead for the sim

5. Robot Footprint

	Parameter

	Values

	Description

	type

	“circular”, “polygon”

	Type of robot.

	radius

	(Numeric) eg. 0.2

	Radius for circular robot

	vertices

	(List) eg. [[-0.205, -0.155], [-0.205, 0.155], [0.077, 0.155], [0.077, -0.155]]

	List of vertices for the robot polygon.

	padding

	(String) eg “0.01

	Padding for the robot. Think of this as extra distance
from the robot for safety reasons.

6. Cost Footprints

	Parameter

	Values

	Description

	pdist_scale

	(Numeric) eg 1.8

	Increasing this value makes the algorithm prefer paths that are closer to the global path

	gdist_scale

	(Numeric) eg. 1.0

	Increasing this value makes the algorithm prefer paths that are closer to the goal.

	occdist_scale

	(Numeric) eg. 0.4

	Increasing this value makes the algorithm prefer paths that are farther from
obstacles. Try increasing if the robot is straying too close to obstacles.

Files to alter for Tuning

The following files need to be altered and saved for custom parameters to take effect.

1. turtle_mowito

	Trajectory Planner

	mowito_ws/src/turtle_mowito/mowito_turtlebot/config/controller_config/trajectory_planner_ros.yaml

	Local Costmap

	mowito_ws/src/turtle_mowito/mowito_turtlebot/config/costmap_config/local_costmap_params.yaml

	Global Costmap

	mowito_ws/src/turtle_mowito/mowito_turtlebot/config/costmap_config/global_costmap_params.yaml

2. rosbot

	Trajectory Planner

	mowito_ws/src/gazebo_sim/src/rosbot_description/config/controller/trajectory_planner_ros.yaml

	Local Costmap

	mowito_ws/src/costmap2d/config/local_costmap_params.yaml

	Global Costmap

	mowito_ws/src/costmap2d/config/global_costmap_params.yaml

Common Problems and Tuning

This section describes certain common problems and describes in more detail how changing parameters will affect the robot behaviour.

Tip

Traditionally, one may edit and save the parameter files and relaunch the navigation to see their affect. It is highly recommended to use rqt_reconfigure, a ros utility that allows changing parameters during execution. Thus, there is no need to relaunch the navigation node(s). To use rqt_reconfigure, open a separate terminal (source the ros) and run

rosrun rqt_reconfigure rqt_reconfigure

A window like this would appear

[image: rqt_reconfigure.png]

Usage

	Make sure all parameters have the correct values.

	Change the values using either the sliders or the boxes next to the sliders

	After tuning, make sure to save your new parameters by changing them in the files listed above so that they are loaded each time the navigation is launched.

	It is recommended to make a backup of the original parameter files.

A. Local path is curving a lot and causes the robot to be slow and move in a sine wave-like path.

This happens because of the path cost solution (pdist_bias, gdist_bias and occdist_bias params)
Increasing the pdist bias will cause the robot to move closer to the global path, thereby reducing the ‘sinusoidal’ behaviour of the robot.

[image: pdist_15.png]
pdist_bias is set to 1.5

[image: pdist_40.png]
pdist_bias is set to 4.0

B. The robot is not following the global path that goes between obstacles when the opening is small or the robot comes close to the obstacle and gets stuck.

The robot comes close to obstacles because either the global path or the local path is not far enough from obstacles. It is suggested to tweak the inflation_radius and cost_scaling_factors to avoid this.

Obstacles exert a ‘cost’ on the map. For this purpose, the map is divided into a grid-based on a resolution. Think of this as pixels on a screen. A higher resolution means more points on the map. For each point, the cost is calculated. Thus, a higher resolution would require more computation power. Keep in mind that the resolution should be lower than that of the laser scanner hardware mounted on the robot.

The collection of all these points with their costs is called a ‘costmap’. The cost of each pixel is used to determine how close the robot is to the object relative to how close it should be. This is not an actual estimate, only a numerical one that scales inversely with distance to the object and gives the robot a sense for how close it is to an obstacle. For example, the points close the obstacle will have a cost value close to 255, and cost would decrease the farther away we go from the obstacle. The rate of decrease and the limit of the obstacle’s influence can be changed by tweaking the inflation_radius and cost_scaling_factor.

Inflation radius
Inflation radius sets the absolute limit till which an object exerts influence or cost. Starting from the inflation radius and beyond, the costmap will have 0 cost due to the obstacle.

Cost Scaling Factor
This factor defines how steeply or gradually the cost will decrease as we move farther away from the obstacle. It is inversely proportional to the cost of a cell. So a higher value means the costs decrease quickly as we move farther from an obstacle. A lower value would lead to a more gentle slope.

It is recommended to set inflation_radius and cost_scaling_factor such that slopes are gentler and move a decent distance away from the obstacle. This allows the global path planner and trajectory planner to find the ‘midway’ path between obstacles and not stray too close to one obstacle.
In the examples below, a higher cost is indicated by darker shade for the ‘pixel’ or grid-cell.

[image: costmap_rad_02.png]
inflation_radius: 0.2, cost_scaling_factor: 3.0

[image: costmap_rad_02.png]
inflation_radius: 1.5, cost_scaling_factor: 3.0

Notice how in the first case, the global path goes close to the obstacles, while in the second case, a path that is roughly equidistant from all obstacles is chosen.

[image: costmap_rad_02.png]
inflation_radius: 1.5, cost_scaling_factor: 15.0

Notice how in this case, the scaling factor is high and the costmap around obstacles is steep. This means the cost reaches zero quickly and the global path changes. While this may look similar to the first case, notice that in the first case the costmap slope is gradual but the inflation radius is short and the costmap around an obstacle terminates quickly because of the short radius. In this case, the radius is more than enough but the costmap is steep and reaches zero cost.

Ths same parameters are also tweaked for the local costmap used by the trajectory planner (Yes, the costmap used by the global planner is global costmap, while that used by trajectory planner is local costmap).

For instance, take global costmap parameters as:

	inflation_radius: 0.2

	cost_scaling_factor: 3.0

[image: costmap_rad_02.png]
Local Costmap cost_scaling_factor: 3.0, inflation_radius: 0.1

[image: costmap_rad_02.png]
Local Costmap cost_scaling_factor: 3.0, inflation_radius: 0.8

Notice how the robot is considering a larger area and that the path it took is relatively farther from obstacles than it is in the first case. The change can be increased by tuning the cost_scaling_factor and inflation_radius. If the inflation radius is too large, the robot may try to avoid narrow pathways.

C. The calculation needs too much time to stay at moving frequency

The number of times this warning occurs can be reduced by tweaking parameters to use less computational resources. Try reducing local costmap width and height. This is an effective method to reduce computation time.

Other methods to reduce computation time:

	Increase sim_granularity

	Reduce vx_samples and/or vtheta_samples

	Reduce sim_time

D. The robot is able to reach the first goal but fails for subsequent ones.

The cause is unknown. Reducing heading_lookahead for trajectory planner may fix the issue. Try the value 0.325

 Frequently Asked Questions

Frequently Asked Questions

In construction

 Step 5-C : Controller - Teb Local Planner Tuning Guide

Step 5-C : Controller - Teb Local Planner Tuning Guide

Description

Teb implements an online optimal local trajectory planner for navigation and control of mobile robots. The initial trajectory generated by a global planner is optimized during runtime w.r.t. minimizing the trajectory execution time (time-optimal objective), separation from obstacles and compliance with kinodynamic constraints such as satisfying maximum velocities and accelerations.

The optimal trajectory is efficiently obtained by solving a sparse scalarized multi-objective optimization problem. The user can provide weights to the optimization problem in order to specify the behavior in case of conflicting objectives.

Since local planners such as the Timed-Elastic-Band get often stuck in a locally optimal trajectory as they are unable to transit across obstacles, an extension is implemented. A subset of admissible trajectories of distinctive topologies is optimized in parallel. The local planner is able to switch to the current globally optimal trajectory among the candidate set. Distinctive topologies are obtained by utilizing the concept of homology / homotopy classes.

Parameter Description

The teb_local_planner package allows the user to set parameters in order to customize the behavior. These parameters are grouped into several categories: robot configuration, goal tolerance, trajectory configuration, obstacles, optimization, planning in distinctive topologies and miscellaneous parameters.

1. Trajectory Configuration Parameters

	Parameter

	Values

	Description

	teb_autosize

	true/false

	If set to true automatic resizing occurs

	dt_ref

	number

	Desired temporal resolution of the trajectory (the trajectory is not fixed
to dt_ref since the temporal resolution is part of the optimization, but
the trajectory will be resized between iterations if dt_ref
+-dt_hysteresis is violated.

	dt_hysteresis

	number

	Hysteresis for automatic resizing depending on the current temporal
resolution, usually approx 10% of dt_ref is recommended

	global_plan_overwrite_orientation

	true/false

	Overwrite orientation of local subgoals provided by the global planner
(since they often provide only a 2D path)

	max_global_lookahead_dist

	S.I

	Specify the maximum length (cumulative Euclidean distances) of the subset
of the global plan taken into account for optimization. The actual length
is then determined by the logical conjunction of the local costmap size
and this maximum bound. Set to zero or negative in order to deactivate
this limitation.

	feasibility_check_no_poses

	number

	Specify up to which pose on the predicted plan the feasibility should be
checked each sampling interval.

	min_samples

	number

	Minimum number of samples(always greater than 2)

	max_samples

	number

	Maximum number of samples

2. Robot Configuration Parameters

	Parameter

	Units

	Description

	max_vel_x

	S.I

	Maximum translational velocity of the robot

	max_vel_x_backwards

	S.I

	Maximum absolute translational velocity of the robot while moving backwards

	max_vel_theta

	S.I

	Maximum angular velocity of the robot

	acc_lim_x

	S.I

	Maximum translational acceleration of the robot

	acc_lim_theta

	S.I

	Maximum angular acceleration of the robot

	min_turning_radius

	S.I

	Maximum turning radius of a car like robot (set to zero for diff-drive robot)

3. Robot Footprint Parameters

	Parameter

	Values

	Description

	type

	point,
circular,
two_circles
,line,
polygon

	Type of robot

	radius

	Numeric
eg. 0.2

	Radius for circular robot

	line_start

	Eg. [-0.3,
0.0]

	It contains the start coordinates of the line segment for type “line”

	line_end

	Eg. [0.3,
0.0]

	It contains the end coordinates of the line segment for type “line”

	front_offset

	Numeric
eg. 0.2

	It describes how much the center of the font circle is shifted along the
robot’s x-axis. The robot’s axis of rotation is assumed to be located at
[0,0] for type “two_circles”

	front_radius

	Numeric
eg. 0.2

	Contains the radius of the front circle for type “two_circles”

	rear_offset

	Numeric
eg. 0.2

	It describes how much the center of the font circle is shifted along the
robot’s negative x-axis. The robot’s axis of rotation is assumed to be
located at [0,0] for type “two_circles”

	rear_radius

	Numeric
eg. 0.2

	Contains the radius of the front circle for type “two_circles”

	vertices

	Eg.[[0.1,
0.1],[0.1,
-0.1],[-0.1
,-0.1],[-0.
1,0.1]]

	It contains the list of polygon vertices (2D coordinates each). The
polygon is always closed: do not repeat the first vertex at the end for
type “polygon”

4. Goal Tolerance Parameters

	Parameter

	Units

	Description

	xy_goal_tolerance

	S.I

	Maximum allowable deviation in robot position from the goal position.

	yaw_goal_tolerance

	S.I

	Specifies the maximum allowable angular deviation in the robot orientation from the
goal orientation.

	free_goal_vel

	true/false

	when set to false removes the goal velocity constraint such that the robot can arrive
at the goal with maximum velocity.

5. Obstacle Parameters

	Parameter

	Values

	Description

	min_obstacle_dist

	S.I

	Minimum desired separation from obstacles in meters

	include_costmap_obstacles

	true/false

	Specify if obstacles of the local costmap should be taken into account. Each cell
that is marked as an obstacle is considered as a point-obstacle. Therefore do not
choose a very small resolution of the costmap since it increases computation time.

	costmap_obstacles_behind_robot_dist

	S.I

	Limit the occupied local costmap obstacles taken into account for planning behind the
robot (specify distance in meters)

	obstacle_poses_affected

	number

	Each obstacle position is attached to the closest pose on the trajectory in order to
keep a distance. Additional neighbors can be taken into account as well. Default
value is 30

	costmap_converter_plugin

	string

	Define plugin name in order to convert costmap cells to points/lines/polygons. Set an
empty string to disable the conversion such that all cells are treated as
point-obstacles.

	costmap_converter_spin_thread

	true/false

	If set to true, the costmap converter invokes its callback queue in a different
thread.

	costmap_converter_rate

	number(Hz)

	Rate that defines how often the costmap_converter plugin processes the current
costmap (the value should not be much higher than the costmap update rate) [in Hz]

6. Optimization Parameters

	Parameter

	Values

	Description

	no_inner_iterations

	number

	Number of actual solver iterations called in each outer loop iteration. See param
no_outer_iterations.

	no_outer_iterations

	number

	Each outer loop iteration automatically resizes the trajectory according to the
desired temporal resolution dt_ref and invokes the internal optimizer (that performs
no_inner_iterations). The total number of solver iterations in each planning cycle is
therefore the product of both values.

	optimization_activate

	true/false

	Set to true for activating optimization

	optimization_verbose

	true/false

	Print the optimization steps

	penalty_epsilon

	number

	Add a small safety margin to penalty functions for hard-constraint approximations

	weight_max_vel_x

	number

	Optimization weight for satisfying the maximum allowed translational velocity

	weight_max_vel_theta

	number

	Optimization weight for satisfying the maximum allowed angular velocity

	weight_acc_lim_x

	number

	Optimization weight for satisfying the maximum allowed translational acceleration

	weight_acc_lim_theta

	number

	Optimization weight for satisfying the maximum allowed angular acceleration

	weight_kinematics_nh

	number

	Optimization weight for satisfying the non-holonomic kinematics (this parameter must
be high since the kinematics equation constitutes an equality constraint, even a
value of 1000 does not imply a bad matrix condition due to small ‘raw’ cost values in
comparison to other costs).

	weight_kinematics_forward_drive

	number

	Optimization weight for forcing the robot to choose only forward directions
positive transl. velocities). A small weight (e.g. 1.0) still allows driving
backwards. A value around 1000 almost prevents backward driving (but cannot be
guaranteed).

	weight_kinematics_turning_radius

	number

	Optimization weight for enforcing a minimum turning radius (only for car like robots)

	weight_optimaltime

	number

	Optimization weight for contracting the trajectory w.r.t transition/execution time

	weight_obstacle

	number

	Optimization weight for keeping a minimum distance from obstacles

7. Homotopy Parameters

	Parameter

	Values

	Description

	enable_homotopy_class_planning

	true/false

	Activate parallel planning in distinctive topologies (requires much more CPU
resources)

	enable_multithreading

	true/false

	Activate multiple threading in order to plan each trajectory in a different thread

	simple_exploration

	true/false

	to use it for exploration set value to true

	max_number_classes

	number

	Specify the maximum number of distinctive trajectories taken into account (limits
computational effort)

	roadmap_graph_no_samples

	number

	Specify the number of samples generated for creating the roadmap graph

	roadmap_graph_area_width

	S.I

	Random waypoints are sampled in a rectangular region between start and goal. Specify
the width of that region in meters.

	h_signature_prescaler

	number

	Scale internal parameter (H-signature) that is used to distinguish between homotopy
classes. Warning: reduce this parameter only, if you observe problems with too many
obstacles in the local cost map, do not choose it extremely low, otherwise obstacles
cannot be distinguished from each other (0.2<value<=1).

	h_signature_threshold

	number

	Two H-signatures are assumed to be equal, if both the difference of real parts and
complex parts are below the specified threshold.

	obstacle_heading_threshold

	number

	Specify the value of the scalar product between obstacle heading and goal heading in
order to take them (obstacles) into account for exploration.

	visualize_hc_graph

	true/false

	Visualize the graph that is created for exploring distinctive trajectories.

8. Miscellaneous Parameters

	Parameter

	Values

	Description

	Odom_topic

	Eg. /odom

	Topic name of the odometry message

	map_frame

	Eg. /map

	Global planning frame

Files to alter for Tuning

The following files need to be altered and saved for custom parameters to take effect.

1. turtle_mowito

	Teb local planner

	mowito_ws/src/turtle_mowito/mowito_turtlebot/config/controller_config/teb_local_planner_ros.yaml

	Local Costmap

	mowito_ws/src/turtle_mowito/mowito_turtlebot/config/costmap_config/local_costmap_params.yaml

	Global Costmap

	mowito_ws/src/turtle_mowito/mowito_turtlebot/config/costmap_config/global_costmap_params.yaml

2. rosbot

	Teb local planner

	mowito_ws/src/gazebo_sim/src/rosbot_description/config/controller/teb_local_planner_ros.yaml

	Local Costmap

	mowito_ws/src/costmap2d/config/local_costmap_params.yaml

	Global Costmap

	mowito_ws/src/costmap2d/config/global_costmap_params.yaml

Common Problems and Tuning

This section describes certain common problems and describes in more detail how changing parameters will affect the robot behaviour.

Tip

You can use rqt_reconfigure tool for configuring the parameters during the run time. To use it, use the following command on a new terminal :

rosrun rqt_reconfigure rqt_reconfigure

[image: teb_5.png]

A. Why does my robot navigate too close to the walls?

[image: teb_1.png]
The local planner follows a moving virtual goal on the global plan. Therefore locations of intermediate global plan positions of the global plan significantly influence the spatial behavior of the local plan. By defining an inflation radius the global planner prefers plans with minimum cost and hence plans with a higher separation from walls. The resulting motion is time-optimal w.r.t. the virtual goal. If your robot hits walls, you should increase min_obstacle_dist or set up an appropriate footprint. Otherwise, increase the inflation radius in costmap configuration.

[image: teb_2.png]

B. Why is the robot not following the global plan properly?

Following the global plan is achieved by targeting a moving virtual goal taken from intermediate global plan positions within the scope of the local costmap (in particular a subset of the global plan with length max_global_plan_lookahead_dist). The local plan between the current robot position and the virtual goal is subject to optimization, e.g. to minimization of the transition time. If the robot should prefer to follow the global plan instead of reaching the (virtual) goal in minimum time, a first strategy could be to significantly reduce max_global_plan_lookahead_dist. But this approach is NOT recommended, since it reduces the prediction/planning horizon and weakens the capabilities of avoiding obstacles . Instead, in order to account for global path following, the teb_local_planner is able to inject attractors (via-points) along the global plan (distance between attractors: global_plan_viapoint_sep > 0 (Eg. 1.0), attraction strength: weight_viapoint > 1 (Eg. 10.0)). Use the publish point option in Rviz to set the via points.

C. Why is there a gap in the trajectory generated by teb local planner?

[image: teb_3.png]
Parameter min_obstacle_dist is chosen too high. If the parameter min_obstacle_dist is set to a distance of 1m, the robot tries to keep a distance of at least 1m to each side of the door. But if the width of the door is just 1m, the optimizer will still plan through the center of the door. But in order to satisfy the minimum distance to each pose the optimizer moves the planned poses along the trajectory (therefore the gap!). If you really have to keep large distances to obstacles you cannot drive through that door. Then you must also configure your global planner (robot footprint, inflation etc.) properly to avoid global planning through it. Otherwise reduce the minimum distance until the trajectory does not contain any large gap.

D. Computation takes too much time. How to speed up the planning?

The following list provides a brief overview and implications of parameters that influence the computation time significantly.

	Local costmap_2D configuration (a rolling window is highly recommended!):

	width/height:
Size of the local costmap: implies maximum trajectory length and how many occupied cells are taken into account (major impact on computation time, but if too small: short prediction/planning horizon reduces the degrees of freedom, e.g. for obstacle avoidance).

resolution:
Resolution of the local costmap: a fine resolution (small values) implies many obstacles subject to optimization (major impact on computation time).

	Obstacle/Costmap parameters of the teb_local_planner:

	costmap_obstacles_behind_robot_dist:
Since the local costmap is centered at the current robot position, not all obstacles behind the robot must be taken into account. To allow safe turning behaviors, this value should be non-zero. A higher value includes more obstacles for optimization.

obstacle_poses_affected:
Number of nearest neighbors on the trajectory taken into account (increases the number of distance calculations for each obstacle). For small obstacles and point obstacles, this value can be small (<10). Increase the value again if the trajectory is not smooth enough close to obstacles.

footprint_model:
The robot footprint model influences the runtime, since the complexity of distance calculation is increased (avoid a polygon footprint if possible).

	Trajectory representation:

	dt_ref:
Determines the desired resolution of the trajectory: small values lead to a fine resolution and thus a better approximation of the kinodynamic model, but many points must be optimized (major impact on optimization time). Too high values (> 0.6s) can lead to trajectories that are not feasible anymore due to the poor approximation of the kinodynamic model (especially in case of car-like robots).

max_global_plan_lookahead_dist:
Limits the distance to the virtual goal (along the global plan) and thus the number of poses subject to optimization (temporal distance between poses approx dt_ref seconds). But the length is also bounded by the local costmap size

	Optimization parameters:

	no_inner_iterations:
Number of solver calls in each “outer-iteration”. Highly influences the computation time but also the quality of the solution.

no_outer_iterations:
Number of outer iterations for each sampling interval that specifies how often the trajectory is resized to account for dt_ref and how often associations between obstacles and planned poses are renewed. Also the solver is called each iteration. The value significantly influences the computation time as well as convergence properties.

weight_acc_lim_:
You can ignore acceleration limits by setting the weight to 0.0. By doing so the complexity of the optimization and hence the computation time can be reduced.

	Parallel planning of alternative trajectories:

	enable_homotopy_class_planning:
If you only have timing problems in case multiple alternatives are computed, set the alternative planning to false or first restrict the number of alternatives using max_number_classes.

max_number_classes:
Restrict the number of alternative trajectories that are subject to optimization. Often 2 alternatives are sufficient (avoid obstacles on the left or right side).

E. Why does the robot oscillate if the goal is near an obstacle?

[image: teb_4.png]
This is because the value of inflation radius and min_obstacle_dist are set pretty low. Note that if you are using a point footprint model the min_obstacle_dist must also include the radius of the robot. Set the inflation radius greater than the min_obstacle_dist and also make sure that the robot follows the global plan more accurately to reduce the oscillations.

 Troubleshooting

Troubleshooting

In construction.

 _images/toolbox.png
Create Map Tool

Interactive Mode Accept New Scans

Clear Changes J(save Changes [BXS
save Map I J
Serialize Map | [husky_map |
Deserialize Map J(|

Start At Dock () Start At Pose Est. () Start At Curr. Odom () Localize
J¥| o] J

[Clear Measurement Queue |

Merge Map Tool
[Add Submap J| J
[Generate Map |

_images/tree_set_plan_mode.png
Reactive Control

Recovery Control

set_plan_condition

A

Reactive Sequence

backup_action

4/\

Inverter follow_path_action

isSuck_condition

_images/teb_4.png
@

_images/teb_5.png
econfigure_Param - rqt
#Dynamic Reconfigure D@ -0
Filter key:) [controller executive/teb local planner x
Collapse all Expand all GoalTolerance HCPlanning ~ Obstacles ~ Optimization =~ Recovery —Robot Trajectory ViaPoints
> camera min_obstacle_dist 00 = 100 0.5

~ controller_exec.

E"re E"rw inflation_dist 0.0 = 15.0 0.6

trajectory_pl. dynamic_obstacle_inFlation_dist 0.0 = 150 0.6
» costmap
gazebo include_dynamic_obstacles
+ global pla
pr e include_costmap_obstacles v

legacy_obstacle_association

obstacle_association_force_inclusion_factor 0.0 = 1000 1.5
obstacle_association_cutoff_factor 1.0 = 1000 5.0
costmap_obstacles_behind_robot_dist 0.0 == 200 15
obstacle_poses_affected 0 200 30

Reduce_velocity_near_obstacles
obstacle_proximity_ratio_max_vel 0.0 s— 10 10

Refresh obstacle_proximity_lower_bound 0.0 10.0 0.0

(System message might be shown here when necessary)

_images/yaw_gain.png
time (5)

100

EY

60

40

20

yaw_gain vs radius of turn

— yaw_gain
=2
— yaw_gain

-_
=25

——\/\ — yaw_gain
-5

-

05 10 15 20

radius of turn(m)

_static/ajax-loader.gif

_images/tree_set_route_mode.png
Reactive Control

Recovery Control

generate_path_action No. of retries: 10

L

Reactive Sequence

e

backup_action

Inverter follow_path_action

_images/tree_waypoint_mode.png
Reactive Control

Sequence

‘/\5

generate_path_action

Recovery Control
No. of retries: 10

/\.

Reactive Sequence

backup_action

—

Inverter

isSuck_condition

follow_path_action

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Mowito’s Navigation Stack documentation

 		
 About Mowito Navigation Stack

 		
 Overview

 		
 Features of the Navigation Stack

 		
 How to use Mowito Navigation Stack

 		
 Installation Guide

 		
 System Requirements

 		
 Hardware Requirements

 		
 Software Requirements

 		
 Setting up Mowito Navigation Stack

 		
 User Registration

 		
 Installing the Mowito on Computer (amd64 or x86)

 		
 Installing the Mowito on the Robot -ROSbot (arm64, armhf)

 		
 Step 1 : Choosing a Bot

 		
 For Simulation

 		
 For Real Robot testing

 		
 Step 2 : Setup the Bot

 		
 Setup for Simulation

 		
 Step 1 : Cloning the chosen bot in the mowito_ws (the one you setup during installation)

 		
 Step 3 : Generate a Map

 		
 Mapping for Simulation Pursose

 		
 Method 1 : Manual Map generation via remote control robot exploration

 		
 Method 2 : Map generation by providing goal destination for navigating robot for exploration

 		
 Saving the Map

 		
 Step 4 : Navigate the Chosen Bot

 		
 Navigation for Simulation Purpose

 		
 Route Based Navigation

 		
 Overview

 		
 Step 5 : Configuring Bot Parameters

 		
 Config : Controller - MaxL

 		
 Overview

 		
 Robot Parameter Description

 		
 1. Robot Configuration Parameters

 		
 2. Linear speed and acceleration

 		
 3. Turning Parameters

 		
 4. Inflation

 		
 5. Frame Names

 		
 6. Topic Names

 		
 7. Robot Footprint

 		
 8. Obstacle Ranges

 		
 9. Pure Pursuit Parameters

 		
 10. MaxL Miscellaneous Parameters

 		
 11. Parameters for Oscillation Detection by Path Index

 		
 12. Parameters for Oscillation Detection by Angular Velocity

 		
 13. Scoring Parameters

 		
 MaxL Controller Tuning Guide

 		
 Steps to tuning the MaxL Controller

 		
 Step 1 : Generating Motion Primitives for the Controller

 		
 Accessing the motion primitives generator web tool

 		
 Setting the motion primitive parameters to generate the motion primitives

 		
 Hit the Submit button

 		
 The motion primitives will begin generation and a progress bar is displayed to track it

 		
 After completion

 		
 Hit the download button

 		
 Step 2 : Configuring the MaxL parameters

 		
 Parameters influneced by Bot architecture:

